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A Transformed Symmetrical Condensed Node for the
Effective TLM Analysis of Guided Wave Problems

Malgorzata Celuch-Marcysiak and Wojciech K. Gwarek, Senior Member, IEEE

Abstract— We propose a novel TLM algorithm for the effec-
tive solution of arbitrary guided wave problems. The algorithm
uses an appropriately transformed symmetrical condensed node
introduced herein. In comparison with the previous SCN TLM
formulation for the analysis of guiding structures, our approach
maintains equivalent accuracy and generality while providing a
50% gain in terms of required computer memory and time. The
advantages of our algorithm are verified by means of several
examples, including full - wave analysis of waveguides filled with
anisotropic and lossy media.

I. INTRODUCTION

N THE MICROWAVE frequency range of crucial impor-

tance is the ability to accurately and efficiently solve guided
wave problems. Dispersion characteristics as well as field
distribution of various modes in a guiding structure have to
be known for proper designing of a microwave circuit. Since
a plethora of microwave guiding structures are currently in use,
a versatile analysis algorithm should be capable of modelling
waveguides with arbitrarily shaped cross-sections and filled
with inhomogeneous and anisotropic media. Such capabilities
are inherent in the time-domain methods [1]. However, a
direct 3-D time-domain approach to guided wave problems as
proposed in [3] is not attractive for a designer due to extensive
computer memory and time requirements.

To obviate this efficiency problem we have to hote that if the
propagation along the guide proceeds with a particular phase
constant 3, the analytical description of fields in the direction
of propagation is known and the numerical analysis can be
reduced to the guide’s cross-section. So far, three algorithms
based on this approach have been proposed:

1. a specialized version of the 2-D FD-TD method [2],
2. a TLM algorithm using a symmetrical condensed node
(SCN) and complex notation in the time domain [4], [5],

3. an FD-TD algorithm using complex notation [6].

In this contribution we propose an alternative formulation
based on the appropriately transtormed SCN. In terms of
accuracy and generality, our algorithm is fully equivalent to
the method of [4], but it provides an over 50% gain in both
computer memory and time required to solve any particular
problem.
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Fig. 1. Symmetrical Condensed Node after Johns [7].

II. A TRANSFORMED SYMMETRICAL CONDENSED NODE

A fundamental structure of the SCN after [7] is shown in
Fig. 1. Inhomogeneous and anisotropic media are modelled by
additional six stubs 13..18 at the node. Scattering at the node
is described by an 18 x 18 matrix S [7].

The complex SCN TLM algorithm of {4] follows from
closing the arms of the node along the direction of propagation
by a nonreciprocal phase shift:
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where [ is the propagation constant along the guide, a
is the space discretization step, prescripts indicate incident
and reflected quantities, superscripts—time instants and sub-
scripts—line numbers according to Fig. 1. This approach
permits to eliminate one space dimension from the analysis,
in exchange however for introducing the complex numbers.

Let us propose the following transformation of the SCN.
Instead of pulses on lines 3, 6, 10, 11 (Fig. 1) we consider
their linear combinations:
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le = V;ll - V3
Klo = VlO - V6 (2)

In the result we observe that:

a) at each node, the scattering matrix .5 assumes a block-
diagonal form, so that instead of one 18 x 18 scattering
equation we deal with two 9 x 9 scattering equations, —
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one equation involves only pulses on branches {B1}
{1,2,9,12,10,11,13,17,18} where 13,17,18 are nodal stubs
(not included in Fig. 1) which account for inhomogeneous
€z, Iby, I, TESPectively; —the other equation involves pulses
on branches {B2} = {4,5,7,8,3,6,14,15,16} where
14,15,16 are stubs which account for €y, €, fi,,

To explain this separation let us note that none of the
classical SCN branches {1,2,9,12} is directly coupled to
{4,5,7,8}. Furthermore, the newly defined branches 3,6 are
separated from {1,2,9,12} and 10,11 are separated from
{4,5,7,8}. The only direct coupling between {B1} and { B2}
proceeds through 3 coupled to 11 and 6 coupled to 10.

b) in place of the coupling equatlons (1) we obtain for
example for line 3:

iyrk+1l _ iy k41
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="V exp (=jfa) + "Vs exp (jPa)
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v

c) in view of the form of equation (3) we note that our
algorithm can be operated with all pulses on branches {B1}
being purely real: V' = U, and all pulses on {B2}—purely
imaginary: V' = jW (while in [4], to be able to satisfy
equations (1), pulses on all branches had to be admitted
complex values);

d) eventually, the coupling equations for lines perpendicular
to the guide’s cross-section take the form:

‘W = W5 cos (Ba) + "UY, sin (Ba)

W = — Uy, cos (Ba) + rW’zf sin (fa)
Wkt = TW’; cos (fa) + 10 sin (fa)

igktt = Uk, cos (Ba) + "WE sin (Ba) @

Consequently, with no loss of accuracy or generality we

have reduced the complex algorithm of [4] to real number’

calculations, with half of the memory cells and less than half
of the operations needed for [4].

In Fig. 2 we present a structure of the transformed node.
This structure leads to an interesting physical interpretation of
the proposed numerical scheme. Essentially, the transformed
node is composed of two sub-nodes which represent solutions
of two 2-D scalar problems, concerning two modes of a planar
circuit (the guide’s cross-section). The two modes are:

1. TM mode (with respect to the axis of the guide, i.e.
the x-axis in Fig. 2)—comprising the E,, H,, H, field
components,
2. TE mode—comprising the H,, E,, E, field components.
A link between thé two sub-nodes provides the coupling
of the two scalar solutions above the cutoff frequency of the
guiding structure, through the transversal field components
E,E. H, H,.

It must be noted that excitation through one of the modes
produces the other mode with the spatial phase shift of /2
corresponding to the physical conditions of a standing wave.
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Fig. 2. Transformed Symmetrical Condensed Node introduced herein.
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Fig. 3. Inhomogeneous LSE—mode and hybrid—mode resonantors.

In the complex notation of [4] it is possible to consider a trav-
elling wave but numerically it corresponds to the combination
of two separately analyzed standing waves. This explains why
the complex notation of [4] requires more computer effort.

III. EXAMPLES OF CALCULATIONS

We analyzed the inhomogeneous resonators with cross-
sections invariant in one direction, as in Fig. 3. In terms of
dispersion characteristics of waveguides with the same cross-
section, such calculations correspond to obtaining a series of
frequencies at which consecutive modes propagate with the
assumed phase constant.

In Table I we present the fundamental resonant frequencies
obtained with the transverse resonance method [3], the 3-D
FD-TD method [3] and our method. If the same mesh size is
used for the direct 3-D approach and our 2-D approach, the 2-
D results appear closer to the transverse resonance reference.
This is a direct consequence of a lower level of numerical
dispersion in a 2-D model as compared to 3-D [8].

We then calculated the dispersion : characteristics -of a
shielded microstrip after [3]. While at low frequencies our
results coincide with those of the direct 3-D FD-TD approach,
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TABLE 1
t TRM 3-D FD-TD| transf. SCN transf. SCN
resoné or a = lmm a = 1lmm a = 0.5mm
Fig.3a 115 66| 15.51 15. 62 15. 64
s = 2mm
Fig.3a
. . . .3
s = 4mm 13.35 13.26 13.33 13.35
Fig.3b —_— 8.34 8.34 8. 40
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Fig. 4. Dispersion characteristics of a shielded microstrip on isotropic
(¢ = 9.4) and anisotropic (¢; = €, = 9.4,6, = 11.6) dielectric: (a)
isotropic, transformed SCN, a = 0.5 mm; (b) isotropic, transformed SCN,
a = 0.25 mm; (c) anisotropic, transformed SCN, ¢ = 0.25 mm; (d) isotropic,
3-D FD-FD, a = 0.5 mm [3]; () anisotropic, 3-D FD-TD, ¢ = 0.5 mm [3].

some discrepancy is observed at higher frequencies (Fig. 4).
This is again a consequence of smaller numerical dispersion
for the 2-D model. As a reference, calculations with the refined
space discretization can serve.

To demonstrate the ability of our algorithm to analyze
anisotropic media we further considered the same microstrip
structure, but on the anisotropic substrate. The results are
included in Fig. 4.

Finally, we have extended the transformed SCN TLM
algorithm fo lossy media. It must be noted that neither this
algorithm nor the complex SCN TLM [4], [5] allow for direct
incorporation of complex wave numbers since these would
cause instability of ¢diculations. Therefore, in both our method
and [5] losses are considered indirectly, by means of a quality
factor of a resonator. Our procedure comprises the following
steps:

1. Neglecting losses, we compute the dispersion character-

istics 3 = B(w).

2. We assume that losses are small enough not to modify
significantly the dispersion characteristics 8 = {w), so
that only the characteristic of o = a(w) rémains to be
determined.

3. For each w, we excite the structure by a sinusoidal
source. Integrating the energy stored within the structure
W and the power dissipated per period Po% we obtain
the quality factor of the resonator (J.
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Fig. 5. Dispersion characteristics of a rectangular waveguide filled with a
lossy dielectric.

4. We calculate the attenuation constant « as:

_ 1,98
N 2Qw8w

(87

®)

with g—g deduced from the inclination of curve 8 = f(w)
is obtained in Step 1.

In Fig. 5 we compare our solutions, analytical solutions
and the solutions of {5] for a rectangular waveguide filled
with a lossy dielectric [5]. As expected for small losses, the
agreement of our approach with theory is very good.

Fig. 5 also reveals a relative advantage of our results as
contrasted to the results of [5]. We presume that this advantage
resides in our implementing of a more accurate model of
excitation, as discussed in [9]. Excitation classically used
for the time-domain analysis of eigenvalue problems consists
in directly setting initial field values within a circuit. After
reaching the steady state, eigenfrequencies are determined as
maxima of the Fourier transform of selected field components,
at selected locations [3]. The new form of exictation [9]
incotrporates a pulse source modelled by an equivalent scheme
including finite resistance. Eigenfrequencies are determined
as minima of the Fourier transform of the current injected
to the circuit by the source. For frequencies different from
the resonance, energy is dissipated in the source resistance.
Consequently, the minima are sharper, obtained with better
resolution and after a smaller number of iterations than the
maxima in the classical approach.

IV. CONCLUSIONS

We have introduced a new 2-D SCN TLM algorithm for
analyzing arbitrary guiding structures. When compared with
the previous 2-D SCN TLM approach proposed in [4], this
algorithm produces indistinguishable results for all examined
types of circuits, provided that equivalent models of excitation
are used in both cases. Simultaneously, our formulation gives
an over 50% gain in both computer time and memory and
leads to a valuable physical interpretation.



CELUCH-MARCYSIAK AND GWAREK: TRANSFORMED SYMMETRICAL CONDENSED NODE FOR EFFECTIVE TLM ANALYSIS 823

In comparison with the direct 3-D approach, the presented
algorithm provides a gain in efficiency by at least an order of
magnitude. Additionally, it proves more accurate as a result
of smaller numerical dispersion of the 2-D models.

Observed differences between the transformed SCN TLM
and the FD-TD formulation of [2] are indeed a direct con-
sequence of the two algorithms being based on two distinct
models of the electromagnetic space: the condensed node and
the Yee’s mesh, respectively. In detail, we have examined
the differences between these two models of space in [8].
General conclusion is that for a particular mesh size, the
algorithm based on the (transformed) SCN introduces smaller
dispersion within homogeneous regions, at the expense of
greater requirements of computer memory and time.

Throughout the paper, we have not related the transformed
SCN TLM to the complex FD-TD of [6]. Instead we have
checked that the complex FD-TD of [6] provides equivalent
results as the FD-TD formulation of [2]. In other words, the
relationship between the complex FD-TD of [6] and the FD-
TD of [2] is analogous to that between the complex SCN TLM
of [4] and the transformed SCN TLM of this paper.
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